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Abstract. The dynamic structure factor S(q, ω) of Li with q ‖ [110] and 0.88 a.u. < q < 1.03 a.u.,
as measured with 1 eV resolution by means of synchrotron radiation based inelastic X-ray scattering
spectroscopy (IXSS), exhibits, in the energy loss range between 3 and 12 eV, a fine structure, which
appears as a resonance around 4 eV and an antiresonance around 8 eV, when the difference between the
experimental S(qω)-spectra with q ‖ [110] and q ‖ [111] is considered. In order to find out the origin of this
fine structure we have interpreted recent TLDA (time dependent local density approximation) calculations
of the Li-S(q, ω) [12], which were based on the inversion of the full dielectric matrix, by utilizing a simple
two-plasmon-band model. In this way the fine structure can be traced back to a Fano-like coupling of
the discrete collective excitations (both the regular plasmon and the so-called zone-boundary collective
states (ZBCS’s)) and the particle-hole excitation continuum, mediated by the off-diagonal elements of the
dielectric matrix, ε0G, where G = (2π/a) (1,1,0).

PACS. 71.45.Gm Exchange, correlation, dielectric and magnetic functions, plasmons – 78.70.Ck X-ray
scattering – 71.20.Dg Alkali and alkaline earth metals

1 Introduction

It is well known [1] that the excitation spectrum of jel-
lium (a free electron system on the background of a con-
tinuously distributed positive charge) consists, within the
limits of the random phase approximation (RPA), of two
contributions, which can be clearly separated: (i) discrete
collective excitations (plasmons) for a momentum transfer
q < qc (qc = plasmon cut-off vector) found in an energy
range, which is determined by the plasmon dispersion re-
lation:

~ωp(q) = ~ωp(0) + αq2 (1)

where α is the plasmon dispersion coefficient.
(ii) The particle-hole continuum ~ω(q), which extends,
for a given momentum transfer q, to the following energy
range:

0 < ~ω(q) < q2/2m+ qkF /m for q < 2kF

q2/2m−qkF/m < ~ω(q) < q2/2m+qkF/m

for q > 2kF . (2)

Switching on of the periodic lattice potential results in
the following modifications of the above simple picture,
which are sketched in Figure 1 as calculated for a two-
band model described in Section 2 in greater detail:
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(i) introducing of umklapp-processes (interband transi-
tions) into the particle-hole excitation continuum makes
the collective excitations damped [2].
(ii) The plasmon excitations will form plasmon bands with
plasmon energy gaps at the zone boundaries, provided
these plasmons are well-defined elementary excitations for
q’s extending up to the zone boundary. (Plasmon band
gaps were not represented in Figure 1, since the plasmon
dispersion shown there is the result of a two-band calcula-
tion for Li, where the energy position of the two plasmon
bands at the zone boundary could not be separated be-
cause of the large width of the response function). The
existence of these plasmon bands was experimentally ver-
ified for the case of Si [3,4], where qc > (1/2)G111 (Ghkl =
reciprocal lattice vector).
(iii) The plasmon bands become periodic in the recipro-
cal lattice, so that the lower plasmon band in the second
Brillouin zone of the extended zone-scheme (long-dashed
line in Fig. 1) overlaps the particle-hole continuum. It has
been shown by Sturm et al. [5] and Schülke et al. [6] that
this overlap can lead to Fano-like (anti)resonances [7] due
to the interaction of the discrete plasmon excitations with
the continuum of particle-hole excitations.
(iv) Opening of excitation gaps in the particle-hole exci-
tation spectrum can produce additional zeros (or nearly-
zeros) of the real part of the dielectric function, <ε(q, ω),
in an energy range of very low values of =ε(q, ω), so
that the condition for additional collective excitations, the
so-called zone-boundary collective states (ZBCS’s) [8] is
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Fig. 1. Illustration of the effect of umklapp processes on the
p-h-excitation continuum, both on the regular plasmon exci-
tation branch, and on the ZBCS-branch in the repeated zone
scheme of a two-plasmon-band model of Li (q||[110]; −qr =
q − G; G = (2π/a)(1,1,0)). Solid lines: peak-positions, ~ωo,
of =[−ε−1(qr, ω)00], whenever these peaks represent collective
excitations (regular plasmons and ZBCS’s, resp.), as charac-
terized by <[ε00(qr, ωo)] = 0. Long-dashed lines: result of the
umklapp process on collective excitations, range of plasmon-
Fano-resonances. Short-dashed line: higher plasmon-bands,
only schematic. Points: peak-positions of =[−1/ε00(qr, ω)] and
=[−1/εGG(qr, ω)], respectively.

satisfied. This type of collective excitations has been ver-
ified experimentally for simple metals as Li [9,10] and Be
[11].

It should be shown in what follows that:
(i) Fano-like resonances are, besides Si, also detectable in
Li metal within a certain range of q-values and distinct
directions of q.
(ii) These Fano-like resonances become experimentally
verified not only as being due to interference between reg-
ular plasmons and the the particle-hole continuum, but
also as a consequence of coupling between the ZBCS’s and
the particle-hole (p-h) continuum, where surprisingly the
latter coupling is much stronger than the former one.

The rest of the paper is organized as follows: in Sec-
tion 2 the optimal q-range for detecting of Fano-like res-
onances both for regular plasmons and for ZBCS’s is
defined. Furthermore a two-plasmon-band calculation is
presented in order to predict, what type and size of Fano-
like resonances can be expected in Li metal. In Section 3
we analyze calculations of the complete dielectric matrix
of Li metal, performed within the limits of the time depen-
dent local density approximation (TLDA) by Bross and
Ehrnsperger [12], with respect to Fano-like resonances,
where the interpretation of our two-plasmon band calcu-
lation finds full confirmation. Moreover, these calculations
will show the way to what might be the appropriate exper-
imental signature of Fano-like resonances. In Section 4 we

present the experimental results on Fano-like resonances
in Li metal and compare them with two-plasmon band
and TLDA-calculations. Finally in Section 5 conclusions
about the underlying models are drawn.

2 Plasmon Fano resonances of Li
in a two-plasmon-band model

As pointed out by Sturm et al. [5], the dynamic structure
factor S(q, ω) can be written, within the limit of a two-
plasmon-band model, in the following form:

S(q, ω) = (~q2/4π2e2no)={(−1/εGG)

+ (εG0ε0G/ε
2
GG)[−ε−1(qr , ω)]00}

× [1/(1−G0(|qr + G|))], (3)

where qr = q − G is the momentum transfer, reduced
to the first Brillouin zone, and no is the mean electron
density. [ε−1(qr, ω)]GG′ is the GG′ element of the inverse
of the microscopic dielectric matrix which is defined by

εGG′(qr, ω) = δGG′ − vqr+G[1−G0(|qr+G|)]

× χ0(qr+G,qr+G′, ω), (4)

vqr+G = 4π2/|qr + G|2, χ0(qr + G,qr + G′, ω) is the
independent-particle density-density response function,
and G0(q) is a static local-field factor, which corrects
approximately for exchange and correlation. It can eas-
ily be verified that this way of introducing the local-
field factor G0(q) into the dielectric matrix is equiva-
lent to the usual definition, as given for example by
Utsumi and Ichimaru [13] for the case of jellium. (In
Eq. (3) the arguments (qr , ω) of εGG′ have been sup-
pressed). Equation (3) clearly indicates how a Fano-
like plasmon resonance originates: it is the coupling of
the discrete long-wavelength collective excitation, rep-
resented by =[−ε−1(qr, ω)]00, to the short-wavelength
electron-hole-pair excitation continuum, described by
=[−1/εGG(qr, ω)], which can produce a valley-peak fine
structure typical of a Fano resonance, whenever the cou-
pling factor fG(qr , ω) = εG0ε0G/ε

2
GG has a negative

imaginary part, and <[−ε−1(qr, ω)] changes its sign from
plus to minus at ω = ωp(qr). Additionally, it depends on
the sign of the real part of the coupling factor fG(qr , ω),
whether the coupling of the collective excitation, repre-
sented by =[−ε−1(qr , ω)] (always positive), will produce
a resonance or an antiresonance. In order to find out the
most favourable case for detecting plasmon Fano reso-
nances in Li, one has, on the one hand, to realize that
the strength of these resonances are determined by the
non-diagonal elements ε0G of the dielectric matrix, whose
value depends mainly on the size of the G-th Fourier com-
ponent, VG, of the crystal potential. According to Heine
and Abarenkov [14], the G-th Fourier components V110

and V200 of the local pseudopotential of Li are the most
prominent ones among all the others. On the other hand,
according to Figure 1, |q| must not be much smaller than
|−qc+G|, in order that =[−ε−1(qr , ω)]00 represents a well
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Fig. 2. Response functions of Li for q||[110]; q = 0.88 a.u.,
q = 0.93 a.u., q = 0.96 a.u. and q = 1.03 a.u., respec-
tively, empirical pseudopotential calculation within the limits
of a two-plasmon-band model. Solid line: S(q, ω). Long-dashed
line: SG(q, ω). Short-dashed line: S0(qr, ω); −qr = q − G;
G = (2π/a)(1, 1, 0).

defined discrete collective excitation (qc = 0.48 a.u. for
Li; a.u. = atomic units: ~ = e = me = 1). Moreover, since
~ω = q2/2m roughly marks the centre of the electron-
hole excitation continuum, and q2/2m−kFq/m is its lower
boundary, |q| must not be too far from [2m~ωp(qr)]1/2,

and must not be larger than (2~ωp(qr) + k2
F )1/2− kF . By

taking into account all three constraints on q, the most
favourable case is

G = (2π/a)(1, 1, 0), q||[110],

| − qc + G110| < |q| < (2~ωp(qc) + k2
F )1/2 − kF (5)

(kF = Fermi momentum). G200 would contribute a strong
crystal potential Fourier coefficient, but since | − qc +
G200| ≈ [(2~ωp(qc) + k2

F )1/2 − kF ] � [2m~ωp(qr)]1/2,
the case q||[200]; G = (2π/a)(2, 0, 0) is not an appropri-
ate candidate for detecting plasmon-Fano-resonances [6].
Cases with other reciprocal lattice vectors than G110 and
G200 should not be considered because of the much too
small Fourier coefficients of the crystal potential.

We have calculated the plasmon Fano resonances of
Li within the limits of the two-plasmon-band model ac-
cording to equations (3) and (4) with G = (2π/a)(1, 1, 0);
q||[110] and 0.88 a.u. < |q| < 1.03 a.u. (see Eq. (5)). The
dielectric 2×2 matrix was obtained using a two-band (lo-

Fig. 3. Coupling factor fG(qr, ω) of the two-plasmon-band
model of Li as a function of ~ω. Solid line: <fG. Dashed line:
=fG; q and qr||[110]; G = (2π/a)(1, 1, 0).

cal) pseudopotential scheme with V110 = 0.05 a.u. [14],
a mean effective band mass meff = 1.12me [15]. Self-
energy (life-time) correction was performed “on-shell”, as
first proposed in [9], whereby the imaginary part of the
self energy, Γ (p) = =

∑
(p, p2/2), was calculated within

the limits of the GW-approximation [16]. The static ap-
proximation of the local-field correction factor, G0(q), of
Li was taken over from Utsumi and Ichimaru [13], what
seems to be justified for q < 2kF according to a semi-
empirical determination of the local-field correction [17].

In Figure 2 S(q, ω) according to equations (3) and
(4) is plotted for four different values of |q|, together
with plots of S0(qr , ω) ≡ N(qr)=[−ε−1(qr, ω)]00 (N(q) =
~q2/4π2e2no), which represents the discrete plasmon exci-
tation, and of SG(q, ω) ≡ N(q)=(−1/εGG), which stands
for the electron-hole excitation continuum. All response
functions were convoluted with a Gaussian, representing
the experimental resolution of 1 eV. One can clearly dis-
tinguish two peaks of the plasmon excitation, where the
one at higher energy loss is the regular plasmon reso-
nance, whereas the one at lower energy losses must be
attributed to what we call a zone-boundary collective
state (ZBCS) due to the excitation gap for p-h-excitations
into quasi-particle states near the G110-Bragg plane. The
dispersion behaviour of these [110]-ZBCS’s of Li has al-
ready been experimentally verified and thoroughly dis-
cussed in [9,10,12]. It should be noticed that remains of
this [110]-ZBCS are also detectable in the p-h-continuum.
It is clearly visible that the coupling of the conventional
plasmon excitation to the p-h-continuum creates an an-
tiresonance with a small valley-peak structure. This be-
haviour is also confirmed by Figure 3, where the real
and imaginary part of the coupling constant fG(qr , ω)
is plotted for the |q| = 0.96 a.u.-case. Both, the real and
the imaginary part of fG are negative within the range
of the above mentioned antiresonance, so that the nega-
tive real part can be made responsible for the antireso-
nance and the very small negative imaginary part for the
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Fig. 4. Solid line: <[−ε−1(qr, ω)]00 of Li. Dashed line:
=[−ε−1(qr, ω)]00 of Li, empirical pseudopotential calculation
within the limits of a two-plasmon-band model; −qr = q−G;
q and qr||[110]; G = (2π/a)(1, 1, 0).

corresponding small valley-peak structure, since the real
part of (−ε−1)00 changes its sign from plus to minus near
the plasmon resonance (see Fig. 4).

The coupling of the ZBCS to the p-h-continuum pro-
duces a very strong Fano-like resonance, characterized by
a valley-peak structure, where the peak is much more pro-
nounced than in the former case, typical of a Fano reso-
nance for the case of very strong coupling. Also this be-
haviour finds confirmation by the plot of fG(qr , ω): it is
the high value of the real part of the coupling constant
fG(qr, ω) and its change of the sign at the ZBCS-peak of
=(−ε−1)00, which produces the strong valley-peak struc-
ture. Moreover, the negative imaginary part of fG gives
rise to an additional resonance in the ZBCS range, since,
as indicated in Figure 4, <(−ε−1)00 remains negative over
the whole range of the ZBCS-resonance.

3 Signatures of plasmon Fano resonances
in TLDA calculations

That far we have studied plasmon Fano-resonances only
within the limits of a two-plasmon band model, so that
the question might arise, to what extent this fine struc-
ture of the dynamic structure factor will survive in a first
principle calculation, which takes into account the dielec-
tric matrix corresponding to a much greater set of re-
ciprocal lattice vectors. It cannot be excluded that con-
tributions from different reciprocal lattice vectors may
destructively interfere. We have used for this purpose
TLDA-calculations of Bross and Ehrnsperger [12] who
have calculated the dielectric matrix of Li and its inverse
for the three principle directions [100], [110] and [111]
of q within a q-range, that covers the relevant range for
plasmon Fano resonances [18]. The result of these calcu-
lations contains, on the one hand, the response function

in the form of the imaginary part of the inverse dielec-
tric matrix, =[−ε−1(qr, ω)]00 and =[−ε−1(qr, ω)]GG, re-
spectively, calculated for a 43× 43 dielectric matrix with
qr||[110] and G = (2π/a)(1, 1, 0). On the other hand, also
the response function in the form of =[−1/ε00(qr, ω)] and
=[−1/εGG(qr, ω)] for qr||[110] and G = (2π/a)(1, 1, 0)
has been calculated on equal footing, so that plots equiv-
alent to Figure 2 can be presented and compared with
the results of the two-plasmon-band calculations. Never-
theless, since the TLDA-data do not exhibit any explicit
self-energy correction, they were further processed in the
following way, in order to make them better compara-
ble both with the two-plasmon band calculations and to
bring them into better agreement with the experimen-
tal data. In order to simulate the “on-shell” self-energy
correction in an appropriate way, the response functions,
for a given qr, were energy-convoluted with a Lorentzian
L(ω − ω′), whose width was chosen ω-dependent accord-
ing to the momentum-dependence of the self-energy of the
states contributing to the transitions involved, where these
states are assumed to be free-electron like:

L(ω − ω′) = [γ(ω)/π]/[(ω − ω′)2 + γ2(ω)] (6a)

γ(ω) = [2/(p2
u − p

2
l )]

∫ pu

pl

p⊥[Γ (pi(ω)) + Γ (pf(ω))]dp⊥

(6b)

p0 =


(~ω/q)−(q/2) for |(~ω/q−(q/2) ≤ kF
−kF for (~ω/q)−(q/2) < −kF
kF for (~ω/q)−(q/2) < kF

(6c)

p2
i = p2

0 + p2
⊥ (6d)

p2
f = (p0 + q)2 + p2

⊥ (6e)

p2
u = k2

F − p
2
0 (6f)

p2
l =

{
k2
F − (p0 + q)2 for p0 + q < kF

0 else
(6g)

Γ (p) = =
∑

(p, p2/2) was again calculated using the GW-
approximation [16]. Additionally the response functions
were convoluted with the experimental resolution (Gaus-
sian) of 1 eV. Since the TLDA-calculations were not per-
formed exactly for the q′s of the experiment, we have made
a linear interpolation of the data between the q-values,
which are nearest to the corresponding experimental one.

Figure 5 presents, in analogy to Figure 2, the
processed data of the TLDA-calculations, namely
S(q, ω) ≡ N(q)=[−ε−1(qr, ω)]GG and S0(qr , ω) ≡
N(qr)=[−ε−1(qr , ω)]00, respectively, together with



K. Höppner et al.: Fano-like coupling of collective and particle-hole excitations in Li metal 57

Fig. 5. Response functions of Li for q||[110]; q = 0.88 a.u.,
q = 0.93 a.u., q = 0.96 a.u. and q = 1.03 a.u., respec-
tively, TLDA-calculation. Solid line: S(q, ω). Long-dashed line:
SG(q, ω)]. Short-dashed line: S0(qr, ω); −qr = q − G; G =
(2π/a)(1, 1, 0).

SG(q, ω) ≡ N(q)=[1/εGG(qr, ω)], where G =
(2π/a)(1, 1, 0), for four different values of q||[110]
within the |q|-range marked in equation (5). The re-
semblance of Figure 5 to Figure 2 is striking, and is
explicitely demonstrated by Figure 6, where the corre-
sponding differences between response functions from
Figures 2 and 5 are plotted for one value of |q|. It is this
resemblance, which makes us to conclude that the most
prominent fine structure of S(q, ω); q||[110] in the range
3 eV < ~ω < 12 eV must be traced back to the interac-
tion of the G110-induced “umklapp”-plasmons with the
p-h-continuum (q||[110]), so that the interpretation of
this fine structure as Fano-like resonances stays valid also
in the context of the TLDA calculations. The interference
with other “umklapp”-processes does not considerably
weaken this interaction.

According to Figure 6, the theoretical calcula-
tions provide signatures of the Fano-like resonances
between 3 eV and 12 eV energy loss, both for regu-
lar plasmons and for the ZBCS’s, in the difference be-
tween the [110]-S(q, ω)-spectrum, as obtained by the
inversion of the full dielectric matrix, on the one
hand, and the [110]-S(q, ω)-spectrum, as calculated from
=(−1/εGG), on the other hand. In order to find sig-
natures of the plasmon-Fano resonances in experi-
ment, one has to compare, within the relevant |q|-

Fig. 6. Solid line: Difference between TLDA-calculated
S(q, ω) and SG(qr, ω). Dashed line: Difference between
pseudopotential-calculated S(q, ω) and SG(q, ω) calculated
within the limits of the two-plasmon-band model. Calculations
are for Li; q||[110]; q = 0.96 a.u.; G = (2π/a)(1, 1, 0).

Fig. 7. TLDA-calculated spectra of Li for q = 0.96 a.u.:
S(q, ω) for q||[110] (thin solid line); SG(q, ω) for q||[110]
(short-dashed line); S(q, ω) for q||[111] (long-dashed line);
SG(q, ω) for q||[111] (dashed-dotted line); G = (2π/a)(1, 1, 0).
Thick solid line: Difference between the TLDA-calculated
S(q, ω)-spectra with q||[110] and q||[111]. Dotted line: Differ-
ence between TLDA-calculated S(q, ω)- and SG(q, ω)-spectra
with q||[110].

range, the experimental [110]-S(q, ω)-spectra with spec-
tra for other q-directions, where these spectra should
satisfy the following two conditions, (i) they should not
exhibit signatures of plasmon Fano resonances in the the-
oretical calculations, this means, there should not be a
marked difference between spectra calculated by the full
inversion of the dielectric matrix and those derived from
=(−1/εGG), (ii) these spectra should largely resemble the
TLDA-calculated q||[110]-SG(q, ω)-spectra between 3 and
12 eV, where the signatures for Fano-like resonances are
expected.
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Fig. 8. Solid line: the same as the thin solid line in Fig-
ure 7. Short-dashed line: the same as in Figure 7. Long-dashed
line: the same as in Figure 7. Dotted line: TLDA-calculated
S0(qr, ω) of Li for qr||[110], qr = 0.38 a.u. Full squares: exper-
imental S(q, ω)-spectrum for q||[110]; q = 0.96 a.u. Open trian-
gles: experimental S(q, ω)-spectrum for q||[111]; q = 0.96 a.u.
Open squares: experimental S(q′, ω)-spectrum for q′||[111];
|q′| = |q−G110|; q

′ = 0.38 a.u.; q = 0.96 a.u.

It is shown in Figure 7 that the q||[111]-spectra sat-
isfy these conditions quite well, so that they can serve as
appropriate reference spectra for demonstrating the exis-
tence of plasmon-Fano resonances in the experiment.

4 Measurements of plasmon Fano resonances
in Li metal; discussion of the results

We have measured the double differential scattering cross
section of single crystal Li metal with q||[110] and q||[111]
for q = 0.38; 0.88; 0.93; 0.96 and 1.03 a.u. with 1 eV resolu-
tion using synchrotron radiation from the DORIS storage
ring at DESY, Hamburg, monochromatized to 7.99 keV
by means of a Ge(311) double crystal monochromator,
and by employing a Si(444) spherically bent analyzer. The
experimental setup used is described in detail elsewhere
[19]. Contrary to former S(q, ω)-measurements on Li (see
Ref. [9]) we have performed the measurements now on a
much finer q-grid within a q-range, which has been care-
fully selected in order to meet the conditions for plasmon-
Fano-resonances as formulated in Sections 2 and 3. The
data processing for getting S(q, ω) from the measured
scattering cross sections is presented in [9]. It should ex-
plicitely be mentioned that all experimental data between
0 and 2 eV are less reliable because of the overlap with
the rather strong quasi-elastically scattered line.

One example of these measurements, both the [110]-
S(q, ω)- and the [111]-S(q, ω)-spectrum for q = 0.96 a.u.
as well as the [110]-S(q′, ω)-spectrum for q′ = |q−G110| =
0.38 a.u. is plotted in Figure 8 together with the re-
sults of corresponding calculations, as already shown sep-

arately in Figure 7, namely both the TLDA-[110]-S(q, ω)-
and the [111]-S(q, ω)-spectrum for q = 0.96 a.u. as ob-
tained by the inversion of the dielectric matrix, and
the TLDA-SG(q, ω)-spectrum. Moreover, also the TLDA-
[110]-S(qr, ω)-spectrum for qr = 0.38 a.u. is shown.
One can easily recognize the relevant signatures of the
plasmon-Fano-resonances in the experimental data, both
with respect to the conventional plasmons and to the
ZBCS’s: (i) the deep dip (antiresonance) in the contin-
uum of the [110]-spectrum, when compared with the con-
tinuum of the [111]-spectrum, at ~ω = 7.6 eV, just at
the experimental position of the conventional plasmon for
qr = q −G110. It should be noted that the dip-position
is likewise shifted to lower energy losses by roughly 1 eV,
when compared with the calculations, as the position of
the regular plasmon does; (ii) the shoulder (resonance)
in the continuum of the [110]-spectrum, when compared
with the continuum of the [111]-spectrum, at 4.0 eV, just
at the experimental position of the shoulder of the [110]-
spectrum for qr = 0.38, which must be attributed to a
ZBCS. In order to demonstrate these very clear signa-
tures for plasmon-Fano resonances, which are common in
all experimental results, we have plotted in Figures 9a to
9d the corresponding differences, namely the experimen-
tal differences between the [110]- and the [111]-spectra
for q = 0.88; 0.93; 0.96 and 1.03 a.u., respectively, the
difference between the TLDA-calculated [110]- and [111]-
spectrum from the matrix inversion, and the difference be-
tween the TLDA-[110]-S(q, ω) spectrum from the matrix
inversion and the TLDA-[110]-SG(q, ω)-spectrum. More-
over, the same difference as calculated within the lim-
its of the plasmon-two-band model is shown. We find
for all q-values the valley in the experimental difference
spectrum around 8 eV to be a strong signature of the
plasmon-Fano antiresonance as predicted by the TLDA-
and the two-plasmon-band-calculations. The valley posi-
tion is shifted by roughly 1 eV to lower energy losses,
when compared with the calculation, in agreement with
the corresponding shift to lower energy losses of the ex-
perimental regular plasmon peak. Likewise the peak in the
experimental difference spectrum around 4 eV is found for
all q-values to be a signature of the ZBCS-Fano-resonance
as predicted both by the TLDA- and the two-plasmon-
band-calculations, where the experiment agrees much bet-
ter with the TLDA-calculated [110]-[111] differences than
with the other ones. This must be expected according to
the calculations presented in Figure 7: the resemblance be-
tween the TLDA-[111]-S(q, ω)- and the SG(q, ω)-spectra
is not so good in that ω-region. It should still be noted
that the supplementary (“on-shell”)-self-energy correction
of the TLDA-calculations have lead to a rather good agree-
ment of the spectra with experiment, certainly with one
exception: the overall spectral weight of the calculations
as compared with the experiment is less for 4 eV< ~ω <
12 eV and somewhat larger for 12 eV< ~ω < 20 eV. This
discrepancy might be attributed to the fact that the local-
field correction implicitely performed within the TLDA-
scheme is not properly done, as already stated by Fleszar
et al. [20] for the case of Al.
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(a) (b)

(c) (d)

Fig. 9. Solid line: difference between TLDA-calculated S(q, ω)-spectra of Li with q||[110] and q||[111]. Dashed line: difference
between TLDA-calculated S(q, ω) and SG(q, ω) of Li with q||[110]. Dotted line: difference between the two-plasmon-band
calculated [110]-S(q, ω)- and the two-plasmon-band calculated [110]-SG(q, ω)-spectrum of Li. Full squares: difference between
the experimental S(q, ω)-spectra of Li with q||[110] and q||[111]. (a) q = 0.88 a.u., (b) q = 0.93 a.u., (c) q = 0.96 a.u. and (d)
q = 1.03 a.u., respectively, G = (2π/a)(1, 1, 0).

5 Conclusions

In conclusion, we have found strong indications of Fano-
like coupling of collective and particle-hole excitations in
the measured dynamic structure factor S(q, ω) of Li metal
for q||[110], where the collective excitations could either
be the regular plasmons or zone-boundary collective states
(ZBCS’s). The signatures for the corresponding Fano-
(anti)resonances were found by interpreting calculations
of the microscopic dielectric matrix, performed within the
limits of the time-dependent local density approximation
(TLDA), in terms of a two-plasmon-band model. This way

the productivity of the plasmon-Fano resonance concept
for analyzing of experimental response functions with re-
spect to crystalline local fields could be established.

We thank H. Bross and M. Ehrnsperger of the ML University
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of the full dielectric matrix of Li metal. We thank R. Heise and
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work was funded by the German Federal Ministry of Educa-
tion, Science, Research and Technology under contract No. 05
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